A Cartesian-grid collocation method based on radial-basis-function networks for solving PDEs in irregular domains

نویسندگان

  • N. Mai-Duy
  • T. Tran-Cong
چکیده

This paper reports a new Cartesian-grid collocation method based on radialbasis-function networks (RBFNs) for numerically solving elliptic partial differential equations (PDEs) in irregular domains. The domain of interest is embedded in a Cartesian grid, and the governing equation is discretized by using a collocation approach. The new features here are (a) One-dimensional integrated RBFNs are employed to represent the variable along each line of the grid, resulting in a significant improvement of computational efficiency, (b) The present method does not require complicated interpolation techniques for the treatment of Dirichlet boundary conditions in order to achieve a high level of accuracy, and (c) Normal derivative boundary conditions are imposed by means of integration constants. The method is verified through the solution of secondand fourth-order PDEs; accurate results and fast convergence rates are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Cartesian-grid Collocation Technique with Integrated Radial Basis Functions for mixed boundary value problems

In this paper, high order systems are reformulated as first order systems which are then numerically solved by a collocation method. The collocation method is based on Cartesian discretisation with 1D-integrated radial basis function networks (1D-IRBFN) [1]. The present method is enhanced by a new boundary interpolation technique based on 1D-IRBFN which is introduced to obtain variable approxim...

متن کامل

A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs

Purpose – To present a new collocation method for numerically solving partial differential equations (PDEs) in rectangular domains. Design/methodology/approach – The proposed method is based on a Cartesian grid and a one-dimensional integrated-radial-basis-function (1D-IRBF) scheme. The employment of integration to construct the RBF approximations representing the field variables facilitates a ...

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

‎In this paper‎, ‎indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations‎. ‎Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin‎. ‎To solve the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006